2 00 2 Derivation of Gödel - type metrics with isometry group SO ( 2 , 1 ) × SO ( 2 ) × R Antonio

نویسنده

  • Antonio Enea Romano
چکیده

A class of metrics with isometry group SO(2, 1) × SO(2) × ℜ is derived. Gödel solution belongs to it , and is the only case corresponding to the stress-energy tensor of a perfect fluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X iv : g r - qc / 9 71 20 71 v 1 1 6 D ec 1 99 7 Riemannian Space - times of Gödel Type in Five Dimensions

The five-dimensional (5D) Riemannian Gödel-type manifolds are examined in light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by two essential parameters m 2 and ω : ...

متن کامل

Toda Fields of So(3) Hyper–kahler Metrics and Free Field Realizations

The Eguchi–Hanson, Taub–NUT and Atiyah–Hitchin metrics are the only complete non–singular SO(3)–invariant hyper–Kahler metrics in four dimensions. The presence of a rotational SO(2) isometry allows for their unified treatment based on solutions of the 3–dim continual Toda equation. We determine the Toda potential in each case and examine the free field realization of the corresponding solutions...

متن کامل

Toda Fields of So(3) Hyper–kahler Metrics

We examine the Toda frame formulation of the SO(3)–invariant hyper–Kahler 4–metrics, namely Eguchi–Hanson, Taub–NUT and Atiyah–Hitchin. Our method exploits the presence of a rotational SO(2) isometry, leading to the explicit construction of all three complex structures as a singlet plus a doublet. The Atiyah–Hitchin metric on the moduli space of BPS SU(2) monopoles with magnetic charge 2 is pur...

متن کامل

ar X iv : m at h / 05 07 09 7 v 2 [ m at h . G R ] 1 3 Ju l 2 00 5 BOUNDED COHOMOLOGY AND ISOMETRY GROUPS OF HYPERBOLIC SPACES

Let X be an arbitrary hyperbolic geodesic metric space and let Γ be a countable subgroup of the isometry group Iso(X) of X. We show that if Γ is non-elementary and weakly acylindrical (this is a weak properness condition) then the second bounded cohomology groups H 2 b (Γ, R), H 2 b (Γ, ℓ p (Γ)) (1 ≤ p < ∞) are infinite dimensional. Our result holds for example for any subgroup of the mapping c...

متن کامل

New Einstein-Sasaki spaces in five and higher dimensions.

We obtain infinite classes of new Einstein-Sasaki metrics on complete and nonsingular manifolds. They arise, after Euclideanization, from BPS limits of the rotating Kerr-de Sitter black hole metrics. The new Einstein-Sasaki spaces L(p,q,r) in five dimensions have cohomogeneity 2 and U(1) x U(1) x U(1) isometry group. They are topologically S(2) x S(3). Their AdS/CFT duals describe quiver theori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002